Early development of mushroom bodies in the brain of the honeybee Apis mellifera as revealed by BrdU incorporation and ablation experiments.
نویسنده
چکیده
In the honeybee the mushroom bodies are prominent neuropil structures arranged as pairs in the dorsal protocerebrum of the brain. Each mushroom body is composed of a medial and a lateral subunit. To understand their development, the proliferation pattern of mushroom body intrinsic cells, the Kenyon cells, were examined during larval and pupal stages using the bromodeoxyuridine (BrdU) technique and chemical ablation with hydroxyurea. By larval stage 1, approximately 40 neuroblasts are located in the periphery of the protocerebrum. Many of these stem cells divide asymmetrically to produce a chain of ganglion mother cells. Kenyon cell precursors underly a different proliferation pattern. With the beginning of larval stage 3, they are arranged in two large distinct cell clusters in each side of the brain. BrdU incorporation into newly synthesized DNA and its immunohistochemical detection show high mitotic activity in these cell clusters that lasts until mid-pupal stages. The uniform diameter of cells, the homogeneous distribution of BrdU-labeled nuclei, and the presence of equally dividing cells in these clusters indicate symmetrical cell divisions of Kenyon cell precursors. Hydroxyurea applied to stage 1 larvae caused the selective ablation of mushroom bodies. Within these animals a variety of defects were observed. In the majority of brains exhibiting mushroom body defects, either one mushroom body subunit on one or on both sides, or three or four subunits (e.g., complete mushroom body ablation) were missing. In contrast, partial ablation of mushroom body subunits resulting in small Kenyon cell clusters and peduncles was observed very rarely. These findings indicate that hydroxyurea applied during larval stage 1 selectively deletes Kenyon stem cells. The results also show that each mushroom body subunit originates from a very small number of stem cells and develops independently of its neighboring subunit.
منابع مشابه
A new antigenic marker specifically labels a subpopulation of the class II Kenyon cells in the brain of the European honeybee Apis mellifera
The mushroom bodies are the higher-order integration center in the insect brain and are involved in higher brain functions such as learning and memory. In the social hymenopteran insects such as honeybees, the mushroom bodies are the prominent brain structures. The mushroom bodies are composed of lobed neuropils formed by thousands of parallel-projecting axons of intrinsic neurons, and the lobe...
متن کاملProliferation and programmed cell death of neuronal precursors in the mushroom bodies of the honeybee.
We have studied proliferation and programmed cell death in the brain of the honeybee during metamorphosis. DNA fragmentation detection using the TUNEL method combined with 5-bromodeoxyuridine incorporation experiments reveal that in the mushroom bodies neurogenesis is terminated by extensive apoptosis. Proliferation of mushroom body neuroblasts is active until the fourth day of pupal developmen...
متن کاملCellular and molecular aspects of adult brain development in honeybee castes (Apis mellifera L.)
Background The adult honey bee brain exhibits a complex architecture composed by millions of neurons, glial cells and their respective tracts which form structures known as neuropils. They are organized to produce the optic lobe, antennal lobe, central complex and mushroom bodies. Learning and memory-related skills that honeybee workers use for navigation, foraging, nestmate recognition, and ot...
متن کاملPharmacologic inhibition of phospholipase C in the brain attenuates early memory formation in the honeybee (Apis mellifera L.)
Although the molecular mechanisms involved in learning and memory in insects have been studied intensively, the intracellular signaling mechanisms involved in early memory formation are not fully understood. We previously demonstrated that phospholipase C epsilon (PLCe), whose product is involved in calcium signaling, is almost selectively expressed in the mushroom bodies, a brain structure imp...
متن کاملFormation of antennal lobe and mushroom body neuropils during metamorphosis in the honeybee, apis mellifera.
The projections to the mushroom bodies (mbs) have been clearly described in the brain of adult honeybees (Apis mellifera). Olfactory projection neurons arborize in the lip of the calyceal neuropil, whereas visual projection neurons project to the collar. To study the maturation of this pattern of innervation, as well as the development of uniglomerular projection neurons within the antennal lob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Learning & memory
دوره 5 1-2 شماره
صفحات -
تاریخ انتشار 1998